AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

自回归科学基座模型 BigBang-Proton,提出实现 AGI 的新路线

近日,专注于研发物质世界基座模型的公司超越对称(上海)技术有限公司(超对称)发布了新版基座模型 BigBang-Proton,成功实现多个真实世界的专业学科问题与 LLM 的统一预训练和推理,挑战了 Sam Altman 和主流的 AGI 技术路线。

来自主题: AI技术研报
8549 点击    2025-11-07 15:03
在失败中进化?UIUC联合斯坦福、AMD实现智能体「从错误中成长」

在失败中进化?UIUC联合斯坦福、AMD实现智能体「从错误中成长」

在失败中进化?UIUC联合斯坦福、AMD实现智能体「从错误中成长」

伊利诺伊大学厄巴纳 - 香槟分校(UIUC)等团队近日发布论文,系统性剖析了 LLM 智能体失败的机制,并提出了可自我修复的创新框架 ——AgentDebug。该研究认为,AI 智能体应成为自身的观察者和调试者,不仅仅是被动的任务执行者,为未来大规模智能体的可靠运行和自动进化提供了理论与实践工具。

来自主题: AI技术研报
7244 点击    2025-11-07 15:01
字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

现代 LLM 通常依赖显式的文本生成过程(例如「思维链」)来进行「思考」训练。这种策略将推理任务推迟到训练后的阶段,未能充分挖掘预训练数据中的潜力。

来自主题: AI技术研报
8931 点击    2025-11-04 16:12
让 AI 开口「像人」:最难的不是智能,是「嗓音」

让 AI 开口「像人」:最难的不是智能,是「嗓音」

让 AI 开口「像人」:最难的不是智能,是「嗓音」

Voice Agent 赛道正在爆发,但它迫切需要一个能让对话真正「流动起来」的底层引擎,一个能撑起下一代交互体验的 TTS 模型。竞争的焦点,已经从 LLM 的「大脑」,延伸到了 TTS 的「嗓音」。谁掌握嗓音,谁就掌握着下一代 AI 商业化的钥匙。而 10 月 30 日 MiniMax 发布的 Speech 2.6 模型,似乎正是一个专为解决这些痛点而来的答案。

来自主题: AI资讯
8387 点击    2025-10-31 15:35
Eino ADK:一文搞定 AI Agent 核心设计模式,从 0 到 1 搭建智能体系统

Eino ADK:一文搞定 AI Agent 核心设计模式,从 0 到 1 搭建智能体系统

Eino ADK:一文搞定 AI Agent 核心设计模式,从 0 到 1 搭建智能体系统

当大语言模型突破了 “理解与生成” 的瓶颈,Agent 迅速成为 AI 落地的主流形态。从智能客服到自动化办公,几乎所有场景都需要 Agent 来承接 LLM 能力、执行具体任务。

来自主题: AI技术研报
9039 点击    2025-10-31 10:24
让VLM学会「心中有世界」:VAGEN用多轮RL把视觉智能变成「世界模型」推理机器

让VLM学会「心中有世界」:VAGEN用多轮RL把视觉智能变成「世界模型」推理机器

让VLM学会「心中有世界」:VAGEN用多轮RL把视觉智能变成「世界模型」推理机器

当今的 AI 智能体(Agent)越来越强大,尤其是像 VLM(视觉-语言模型)这样能「看懂」世界的智能体。但研究者发现一个大问题:相比于只处理文本的 LLM 智能体,VLM 智能体在面对复杂的视觉任务时,常常表现得像一个「莽撞的执行者」,而不是一个「深思熟虑的思考者」。

来自主题: AI技术研报
7436 点击    2025-10-28 09:26
NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

NVIDIA港大MIT联合推出Fast-dLLM v2:端到端吞吐量提升2.5倍

自回归(AR)大语言模型逐 token 顺序解码的范式限制了推理效率;扩散 LLM(dLLM)以并行生成见长,但过去难以稳定跑赢自回归(AR)模型,尤其是在 KV Cache 复用、和 可变长度 支持上仍存挑战。

来自主题: AI技术研报
7560 点击    2025-10-27 16:46
DeepSeek最会讨好,LLM太懂人情世故了,超人类50%

DeepSeek最会讨好,LLM太懂人情世故了,超人类50%

DeepSeek最会讨好,LLM太懂人情世故了,超人类50%

在一篇论文中,研究人员测试了 11 种 LLM 如何回应超过 11500 条寻求建议的查询,其中许多查询描述了不当行为或伤害。结果发现 LLM 附和用户行为的频率比人类高出 50%,即便用户的提问涉及操纵、欺骗或其他人际伤害等情境,模型仍倾向于给予肯定回应。

来自主题: AI技术研报
6770 点击    2025-10-27 15:57
NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

NeurIPS 2025 | ARGRE框架实现高效LLM解毒:自回归奖励引导,安全对齐更快、更准、更轻

近期,来自北航等机构的研究提出了一种新的解决思路:自回归奖励引导表征编辑(ARGRE)框架。该方法首次在 LLM 的潜在表征空间中可视化了毒性从高到低的连续变化路径,实现了在测试阶段进行高效「解毒」。

来自主题: AI技术研报
5905 点击    2025-10-26 10:28
腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

腾讯发布SpecExit算法,无损压缩端到端加速2.5倍!解决大模型长思考效率难题

为破解大模型长思维链的效率难题,并且为了更好的端到端加速落地,我们将思考早停与投机采样无缝融合,提出了 SpecExit 方法,利用轻量级草稿模型预测 “退出信号”,在避免额外探测开销的同时将思维链长度缩短 66%,vLLM 上推理端到端加速 2.5 倍。

来自主题: AI技术研报
7942 点击    2025-10-24 16:53